Elucidating the influence of materials-binding peptide sequence on Au surface interactions and colloidal stability of Au nanoparticles.
نویسندگان
چکیده
Peptide-mediated synthesis and assembly of nanostructures opens new routes to functional inorganic/organic hybrid materials. However, understanding of the many factors that influence the interaction of biomolecules, specifically peptides, with metal surfaces remains limited. Understanding of the relationship between peptide sequence and resulting binding affinity and configurations would allow predictive design of peptides to achieve desired peptide/metal interface characteristics. Here, we measured the kinetics and thermodynamics of binding on a Au surface for a series of peptide sequences designed to probe specific sequence and context effects. For example, context effects were explored by making the same mutation at different positions in the peptide and by rearranging the peptide sequence without changing the amino acid content. The degree of peptide-surface contact, predicted from advanced molecular simulations of the surface-adsorbed structures, was consistent with the measured binding constants. In simulations, the ensemble of peptide backbone conformations showed little change with point mutations of the anchor residues that dominate interaction with the surface. Peptide-capped Au nanoparticles were produced using each sequence. Comparison of simulations with nanoparticle synthesis results revealed a correlation between the colloidal stability of the Au nanoparticles and the degree of structural disorder in the surface-adsorbed peptide structures for this family of sequences. These findings suggest new directions in the optimization and design of biomolecules for in situ peptide-based nanoparticle growth, binding, and dispersion in aqueous media.
منابع مشابه
Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd
Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...
متن کاملInfluence of the Debye length on the interaction of a small molecule-modified Au nanoparticle with a surface-bound bioreceptor.
We report that a shorter Debye length and, as a consequence, decreased colloidal stability are required for the molecular interaction of folic acid-modified Au nanoparticles (Au NPs) to occur on a surface-bound receptor, human dihydrofolate reductase (hDHFR). The interaction measured using surface plasmon resonance (SPR) sensing was optimal in a phosphate buffer at pH 6 and ionic strength excee...
متن کاملSpectrophotometric Determination of 4-Hydroxy-2-mercapto-6-methylpyrimidine Based on Aggregation of Colloidal Gold Nanoparticles
We report herein the development of a highly sensitive colorimetric method for the detection of 4-hydroxy-2-mercapto-6-methylpyrimidine (MTU) which acts as an anti-thyroid drug utilizing citrate capped gold nanoparticles (Au-NPs). This thiol-containing molecule exhibits intriguing affinity with Au-NPs. The reactivity involves the displacement of the citrate shell by the thiolate shell followed ...
متن کاملPeptide-mediated synthesis of gold nanoparticles: effects of peptide sequence and nature of binding on physicochemical properties.
Biomimetic nanotechnologies that use peptides to guide the growth and assembly of nanostructures offer new avenues for the creation of functional nanomaterials and manipulation of their physicochemical properties. However, the impacts of peptide sequence and binding motif upon the surface characteristics and physicochemical properties of nanoparticles remain poorly understood. The configuration...
متن کاملA Study of the Influence of Percentage of Copper on the Structural and Optical Properties of Au-Cu Nanoparticle
Here we present our experimental results in synthesizing Au-Cu nano-particles with tunable localized surface plasmon resonance frequency through wet-chemical at temperature room. The reaction is performed in the presence of ascorbic acid as a reducing agent and polyvinyl pyrrolidone as capping agent via four different procedures: (1) mixture of 90% HAuCl4 and 10% CuSO4.5H2O precursors, (2) mixt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 9 1 شماره
صفحات -
تاریخ انتشار 2017